The Crystal Structure of 1,6-Anhydro-3,4-O-isopropylidene- β-D-talopyranose

By N.Ch. Panagiotopoulos
Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

(Received 26 November 1973; accepted 24 January 1974)
The crystal structure of 1,6 -anhydro-3,4- O-isopropylidene- β-d-talopyranose, $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5},\left[P 2_{1} 2_{1} 2_{1}, a=\right.$ $20 \cdot 191$ (5), $b=8.220$ (2), $c=5 \cdot 717$ (2) $\AA, Z=4$], has been determined from 1017 X-ray reflections measured with $\mathrm{Cu} K \alpha$ radiation on an automatic diffractometer and refined to an $R=0.045$. The anhydro and isopropylidene rings are on the same side of the pyranose ring, so that the molecule has an overall 'tub' conformation. The pyranose ring is a distorted ${ }^{3} C_{0}$ chair. Small differences are observed in the $\mathrm{C}-\mathrm{O}$ bond lengths of the anhydride ring, similar to those observed in other anhydro sugars. The molecules are packed by van der Waals interactions with one weak intermolecular hydrogen bond with a $\mathrm{H} \cdots \mathrm{O}$ distance of $2 \cdot 3 \AA$.

Introduction

This work was undertaken as part of a structural study of the fused ring sugars. Related compounds previously studied by crystal structure analysis are: 2,7-anhydro-D-altro-heptulose monohydrate (sedoheptulosan, Brown \& Thiessen, 1969); 1,6-anhydro- β-d-glucopyranose (levoglucosan, Park, Kim \& Jeffrey, 1971); 1,6:2,3-dianhydro- β-D-gulopyranose (Berking \& Seeman, 1971); 1,6-anhydro- β-D-mannofuranose (Lechat \& Jeffrey, 1972); 2,6-anhydro- β-D-fructopyranose (Dreissig \& Lugar, 1972); and 1,2:4,5-di-O-isoprop-ylidene- β-d-fructopyranose (Takagi, Shiono \& Rosenstein, 1973).

Single crystals of 1,6-anhydro-3,4-O-isopropylidene-β-D-talopyranose, (I), $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$, were provided by Professor H. Paulsen of the Institute of Organic Chemistry and Biochemistry, University of Hamburg.

(I)

Experimental

The unit-cell constants, given in Table 1, and the threedimensional intensity data consisting of 1171 reflections were measured with a Nonius CAD-4 automatic diffractometer from a crystal with dimensions $0.3 \times$ $0.3 \times 0.3 \mathrm{~mm}$, using graphite-monochromated $\mathrm{Cu} K \alpha$ radiation and the $0-2 \theta$ scan mode to $2 \theta=150^{\circ}$. The monitored reflections 040,223 , and 801 showed a loss of intensity which was linear with the time that the crystal was exposed. The net loss of intensity amounted to 6%. The intensities were therefore corrected for decay according to the intensity decrease of the monitored reflections using a four-point interpolation method (Shiono, 1969). The intensities were corrected
for Lorentz and polarization effects. No absorption correction was applied. 146 reflections with $I_{\text {meas }} \leq$ $2 \sigma\left(I_{\text {meas }}\right)$ were given zero weight in the refinement.

Table 1. Crystal data
1,6-Anhydro-3,4-O-isopropylidene- β-D-talopyranose $\left(\mathrm{C}_{9} \mathrm{O}_{5} \mathrm{H}_{14}\right)$ M.W. 202-22

Space group $P 2_{1} 2_{1} 2_{1}$, from systematic absences $h 00, h=2 n+1$; $0 k 0, k=2 n+1 ; 00 l, l=2 n+1$
$a=20.191$ (5), $b=8.220$ (2), $c=5.717$ (2) \AA
$Z=4, V=949$ (1) \AA^{3}
$D_{m}=1.431, D_{x}=1.416 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mu(\mathrm{Cu} K \alpha)=9.9 \mathrm{~cm}^{-1}$

Structure determination

The structure was solved using the multiple-solution symbolic-addition programs of Germain, Main \& Woolfson (1970) from 356 reflections with E greater than $1 \cdot 1$. The E map, calculated from the solution with the highest figure of merit, showed 12 of the heavy atoms within the highest peaks, while the two remaining atoms could be identified amongst the lower peaks. This model was refined with isotropic temperature factors, using only the observed reflections. When the R value ($=\Sigma\left|F_{o}-\left|F_{c}\right|\right| / \Sigma F_{o}$) was $0 \cdot 06$, the hydrogen-atom positions were determined from a difference Fourier map and the model was further refined with anisotropic temperature factors using a full-matrix leastsquares program. The hydrogen atoms were given the thermal parameters of the atoms to which they are attached and only their coordinates were refined. In the final cycles of refinement, the reflections 400,110 , $310,120,310,420,211$ and 010 appeared to show extinction and were given zero weight. The other reflections were weighted with the function $w=1 /(1.07$ $+0.02 F_{o}+0.05 F_{o}^{2}$). The final unweighted and weighted agreement indices were $R=0.032, R_{w}=\left(\sum w\left|F_{o}-\left|F_{c}\right|\right|^{2} /\right.$ $\left.\sum w F_{o}^{2}\right)^{1 / 2}=0 \cdot 045$. Scattering factors used for carbon and oxygen atoms were those of International Tables for X-ray Crystallography (1968), while those used for

Table 2. Atomic positional and thermal coordinates
The temperature factor expression used was $\exp \left[-10^{-4}\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$. The estimated standard deviations given in parentheses refer to the least significant digit in parameter values.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	$0 \cdot 3920$ (1)	$0 \cdot 3158$ (3)	$0 \cdot 3231$ (5)	$28 \cdot 8$ (7)	114 (3)	269 (8)	9 (1)	8 (2)	8 (4)
C(2)	$0 \cdot 3296$ (1)	$0 \cdot 3788$ (3)	0.4395 (5)	$20 \cdot 2$ (5)	104 (3)	251 (7)	-6 (1)	-5 (2)	-14 (4)
C(3)	0.3241 (1)	$0 \cdot 5644$ (3)	$0 \cdot 4318$ (4)	$14 \cdot 9$ (4)	109 (3)	219 (6)	-1 (1)	-6 (2)	7 (4)
C(4)	0.3617 (1)	0.6459 (3)	$0 \cdot 2315$ (4)	$22 \cdot 4$ (5)	116 (3)	177 (6)	-1 (1)	-9 (2)	25 (4)
C(5)	0.4218 (1)	$0 \cdot 5460$ (3)	$0 \cdot 1539$ (4)	$25 \cdot 8$ (6)	150 (4)	217 (7)	0 (1)	14 (2)	31 (5) 49 (6)
C(6)	0.4726 (1)	$0 \cdot 5090$ (4)	$0 \cdot 3421$ (5)	$19 \cdot 6$ (5)	174 (4)	349 (9) 198	$10(1)$ $-7(1)$	$14(2)$ $5(2)$	
C(7)	$0 \cdot 3625$ (1)	$0 \cdot 8054$ (3)	$0 \cdot 5664$ (4)	25.2 (6)	97 138 17$)$	198 (6)	$-7(1)$ $-23(2)$	$5(2)$ $-20(3)$	17 (4) 22 (6)
C(8)	0.4176 (2)	0.8814 (4)	$0 \cdot 7068$ (5)	$38 \cdot 1$ (9)	138 (4)	288 (9)	-23(2)	$-20(3)$ $27(3)$	22 (6) 10 (6)
C(9)	0.2979 (2)	0.8991 (3)	$0 \cdot 5906$ (7)	$31 \cdot 2$ (8)	100 (3)	495 (13) 348 (6)	$4(1)$ 9.3 (9)	27 (3) 0 (1)	10 (6)
$\mathrm{O}(1)$	0.44912 (9)	$0 \cdot 3606$ (2)	0.4471 (4)	20.2 (4)	187 (3) 104 (2)	348 (6) 298 (6)	$9.3(9)$ $-10.4(9)$	$12(1)$	$85(4)$ 19 (3)
$\mathrm{O}(2)$	$0 \cdot 32139$ (9)	$0 \cdot 3154$ (2)	0.6680 (4)	$25 \cdot 7$ (5) $22 \cdot 7$ (4)	$\begin{array}{r}187 \\ 104 \\ 85 \\ \hline\end{array}$	298 173 (6)	$-10.4(9)$ $-4.4(7)$	$12(1)$ 0 (1)	$19(3)$ 16 (2)
$\mathrm{O}(3)$	0.35395 0.38171 (8)	0.6386 (2) 0.7993 (2)	0.6323 (3) 0.3245 (3)	$22 \cdot 7$ (4) $24 \cdot 8$ (4)	85 $114(2)$	173 (4) 201 (5)	$-4 \cdot 4(7)$ $-10.3(8)$	0 (1)	40 (3)
O(4)	$0.38171(8)$ 0.3978 (1)	0.7993 (2) $0.3855(2)$	0.3245 (3) 0.0973 (3)	$24 \cdot 8(4)$ $38 \cdot 7(6)$	$114(2)$ $148(3)$	201 (5)	$-10 \cdot 3(8)$ $7(1)$	13 (2)	-20 (3)

Table 2 (cont.)

	x	y	z
$\mathrm{H}(\mathrm{O} 2)$	$0 \cdot 346$ (2)	$0 \cdot 356$ (4)	0.737 (6)
H(1)	$0 \cdot 390$ (1)	$0 \cdot 199$ (4)	$0 \cdot 313$ (5)
H(2)	$0 \cdot 288$ (1)	$0 \cdot 344$ (3)	$0 \cdot 343$ (5)
$\mathrm{H}(3)$	0.277 (1)	$0 \cdot 592$ (3)	0.418 (5)
H(4)	0.333 (1)	0.665 (3)	0.091 (5)
H(5)	0.446 (1)	$0 \cdot 590$ (4)	0.006 (5)
H(6,1)	0.473 (1)	0.596 (4)	0.458 (6)
H(6,2)	0.518 (1)	0.471 (4)	$0 \cdot 258$ (6)
H(8,1)	0.425 (2)	0.996 (4)	0.653 (5)
$\mathbf{H}(8,2)$	0.459 (2)	0.817 (4)	0.676 (6)
$\mathbf{H}(8,3)$	0.406 (2)	0.881 (4)	$0 \cdot 876$ (6)
$\mathbf{H}(9,1)$	0.303 (1)	1.015 (4)	0.539 (6)
$\mathbf{H}(9,2)$	0.261 (2)	$0 \cdot 847$ (4)	0.489 (7)
$\mathbf{H}(9,3)$	$0 \cdot 283$ (2)	$0 \cdot 895$ (4)	0.759 (7)

hydrogen atoms are given by Stewart, Davidson \& Simpson (1965). The final atomic positional and temperature parameters are given in Table 2, the structure

Fig. 1. 1,6-Anhydro-3,4-O-isopropylidene- β-D-talopyranose, showing thermal ellipsoids at 50% probability, except for the hydrogen atoms which are drawn with an arbitrary isotropic temperature factor.
factors are listed in Table 3,* and the interatomic distances and angles in Table 4.

Discussion

The molecule, shown in Fig. 1, has three fused rings; the pyranose ring, $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5) \mathrm{O}(5)$, the anhydride ring, $\mathrm{C}(1) \mathrm{O}(1) \mathrm{C}(6) \mathrm{C}(5) \mathrm{O}(5)$, and the isopropylidene ring, $C(3) C(4) O(4) C(7) O(3)$. The last two rings are fused to the pyranose ring and face each other so that the whole molecule has the overall shape of a 'tub', with the anhydro and isopropylidene rings at dihedral angles of about 120° on the same side of the pyranose ring, as shown in Fig. 2(a).

The conformation of the rings and their orientation, relative to each other and the crystal lattice, is described by the data for the least-squares planes, given in Table 5. The best four-atom plane for the pyranose ring is $P 1$ in which three adjacent $C(2) C(3) C(4)$ and one non-

* Table 3 has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30356 (7pp.). Copies may be obtained from the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 INZ, England.

Table 4. Interatomic distances and bond angles
Bond lengths

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.517(4) \AA$	$\mathrm{C}(1)-\mathrm{H}(1)$	$0.96(3) \AA$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.531(3)$	$\mathrm{C}(2)-\mathrm{H}(2)$	$1.04(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.529(3)$	$\mathrm{C}(3)-\mathrm{H}(3)$	$0.98(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.532(3)$	$\mathrm{C}(4)-\mathrm{H}(4)$	$1.00(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.518(4)$	$\mathrm{C}(5)-\mathrm{H}(5)$	$1.04(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.507(4)$	$\mathrm{C}(6)-\mathrm{H}(6,1)$	$0.98(3)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.521(4)$	$\mathrm{C}(6)-\mathrm{H}(6,2)$	$1.08(3)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.403(3)$	$\mathrm{C}(8)-\mathrm{H}(8,1)$	$1.00(3)$
$\mathrm{C}(1)-\mathrm{O}(5)$	$1.417(3)$	$\mathrm{C}(8)-\mathrm{H}(8,2)$	$1.01(3)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.416(3)$	$\mathrm{C}(8)-\mathrm{H}(8,3)$	$1.00(3)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.432(3)$	$\mathrm{C}(9)-\mathrm{H}(9,1)$	$1.00(3)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.427(3)$	$\mathrm{C}(9)-\mathrm{H}(9,2)$	$1.04(3)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.442(3)$	$\mathrm{C}(9)-\mathrm{H}(9,3)$	$1.01(3)$
$\mathrm{C}(6)-\mathrm{O}(1)$	$1.440(3)$	$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2)$	$0.71(3)$
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.432(3)$	$\mathrm{Mean} \mathrm{C}-\mathrm{C}$	1.522
$\mathrm{C}(7)-\mathrm{O}(4)$	$1.437(3)$	Mean $\mathrm{C}-\mathrm{O}$	1.429

Table 4 (cont.)
Non-bonded intramolecular distances

$\mathrm{H}(6,1) \cdots \mathrm{H}(8,1)$	$3 \cdot 15(5) \AA$	$\mathrm{H}(6,1) \cdots \mathrm{C}(7)$	$2 \cdot 88(4) \AA$
$\mathrm{H}(6,1) \cdots \mathrm{H}(8,2)$	$2 \cdot 22(5)$	$\mathrm{H}(6,1) \cdots \mathrm{C}(8)$	$2 \cdot 96(4)$
$\mathrm{H}(6,1) \cdots \mathrm{H}(8,3)$	$3 \cdot 17(5)$	$\mathrm{O}(3) \cdots \mathrm{O}(1)$	$3 \cdot 168(3)$
$\mathrm{H}(6,1) \cdots \mathrm{O}(3)$	$2 \cdot 62(3)$	$\mathrm{O}(3) \cdots \cdots \mathrm{O}(2)$	$2 \cdot 744(2)$
$\mathrm{H}(6,1) \cdots \mathrm{O}(4)$	$2 \cdot 59(3)$	$\mathrm{O}(2) \cdots \cdots \mathrm{O}(1)$	$2 \cdot 896(3)$
Bond angles			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$112 \cdot 8(2)^{\circ}$	C	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$112 \cdot 1(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116 \cdot 0(2)^{\circ}$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(6)$	$106 \cdot 4(2)$	$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(7)$	$106 \cdot 8(2)$
$\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)$	$101 \cdot 2(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1)$	$108 \cdot 3(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$115 \cdot 0(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$	$110 \cdot 9(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$111 \cdot 8(2)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{O}(4)$	$104 \cdot 6(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(5)$	$109 \cdot 3(2)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$110 \cdot 3(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$111 \cdot 9(2)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(9)$	$110 \cdot 9(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)$	$112 \cdot 6(2)$	$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$109 \cdot 2(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112 \cdot 1(2)$	$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(9)$	$109 \cdot 7(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$104 \cdot 4(2)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$112 \cdot 0(2)$
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(7)$	$104 \cdot 4(2)$	$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2)$	$105 \cdot 1(2)$

adjacent atom $\mathrm{O}(5)$ form an exact plane within 0.003 \AA; this differs from the strainless skew form, however, in that the two excluded atoms, $\mathrm{C}(1)$ and $\mathrm{C}(5)$, are displaced almost equally on the same side of the plane. If these displacements were exactly equal, the pyranose ring would be a strained form with $m\left(C_{s}\right)$ symmetry. The conventional four-atom plane for ${ }^{1} C_{4}{ }^{*}$, i.e. $\mathrm{C}(2)$, $\mathrm{C}(3), \mathrm{C}(5), \mathrm{O}(5)$, is not planar as shown by $P 2$, and the ring is best described by reference to $P 3$, which corresponds to a ${ }^{3} C_{0}$ chair in which $\mathrm{C}(3)$ is flattened by $0.5 \AA$. The five-membered anhydride and isopropylidene rings have envelope conformations (${ }^{0} E$) with the $\mathrm{O}(5)$ and $\mathrm{O}(3)$ atoms 0.62 and $0.56 \AA$ above the least-squares planes of the other four atoms, as shown by planes $P 4$ and $P 5$ in Table 5. The torsion angles associated with the pyranose ring are given in Fig. 3, and the ring torsion angles for the five-membered rings in Table 6.

* For conformation nomenclature, see Schwartz (1973). ${ }^{\text {. }}$

The distortion of the pyranose ring is compared in Table 5 with that in levoglucosan and sedoheptulosan, see Fig. 2. All three molecules have 1.6 -anhydro rings, and the displacement of $C(3)$ from the ideal chair is progressively smaller, as shown by comparing planes $P 3, P 6$ and $P 8$. In sedoheptulosan, the closest approach to $H(6,1)$ is $O(2)$ at $4.2 \AA$, there is no steric repulsion and the difference between the displacements of $O(5)$ and $C(3)$ are a consequence of the strain induced by the 1,6 -anhydro ring formation. In levoglucosan, because of the axial $O(3)$, this ring conformation would have resulted in a $\mathrm{H}(6.1)$ to $\mathrm{O}(3)$ separation of $2.3 \AA$, which is increased to $2.54 \AA$ by a further distortion of the ring by bringing $C(3) 0.1 \AA$ closer to the four-atom plane, $P 6$.

In the isopropylidene talopyranose molecule, the flattening at $\mathrm{C}(3)$ increases the $\mathrm{H}(6,1)$ to $\mathrm{O}(3)$ separation but decreases that to $\mathrm{O}(4)$. The conformation observed is that in which these two non-bonding separations are equal at $2 \cdot 60 \AA$. Compared with isopropyli-

Fig. 2. Comparison of the structure of (a) 1,6-anhydro-3,4- O-isopropylidene- β-D-talopyranose with that of $(b) 1,6$-anhydro- β-Dglucopyranose (levoglucosan; Park, Kim \& Jeffrey, 1971) and with that of (c) 2,7-anhydro-sedoheptulose monohydrate (sedoheptulosan; Brown \& Thiessen, 1969). The numbering system for sedoheptulosan is not the standard one, and is different from that used in the above reference.
dene-fructopyranose (Takagi, Shiono \& Rosenstein, 1973), the dihedral angle between the plane of the isopropylidene ring and the pyranose ring $P 3 / P 5$ is greater by 9° as a consequence of the flattening at $\mathrm{C}(3)$.
The bond lengths and angles are given in Table 4. The C-C bonds are within 3σ of the mean value of $1-522 \AA$, the C-O bond lengths show a wider variation with differences from the mean which appear to be systematic when compared with those observed in other anhydro rings, as in Table 7. These observations may be related to those associated with the anomeric effect as discussed by Jeffrey, Pople \& Radom (1972).
There is only one hydrogen atom available for hydrogen bonding, $\mathrm{H}(\mathrm{O} 2)$, which forms a weak intermolecular bond to the ring oxygen $\mathrm{O}(5)$ of the adjacent molecule displaced by the c axis translation. The $\mathrm{H} \cdots \mathrm{O}$ distance is $2 \cdot 3 \AA$ and the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle 148°. Two intramolecular approaches of $\mathrm{H}(\mathrm{O} 2)$ to $\mathrm{O}(1)$ and $\mathrm{O}(3)$ at $2 \cdot 9$ and $2 \cdot 7 \AA$ (Table 8), with $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles of 102 and 110° respectively, are not regarded as hy-drogen-bond interactions because of the long distances and acute angles. The molecular packing is shown in Fig. 4. The $\mathrm{H}(\mathrm{O} 2)-\mathrm{O}(5)$ hydrogen bond links the molecules in rows, parallel to the c axis, which are packed by van der Waals interactions.

From a n.m.r. study in solution of 1,6 -anhydro-3,4-O-isopropylidene- β-D-galactopyranose, which differs from this molecule in that the positions of $\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2)$ hydroxyl and $\mathrm{H}(2)$ hydrogen are interchanged (see Fig. 2), Heyns, Koll \& Paulsen (1971) have concluded that the pyranose ring approaches the boat conformation. This would increase the $\mathrm{O}(3)-\mathrm{H}(6,1)$ distance, but it would also decrease the $\mathrm{O}(4)-\mathrm{H}(6,1)$ distance to about $2 \cdot 3 \AA$, and, from this work, appears to be a less favorable conformation than the partially flattened ${ }^{3} C_{0}$ chair.

The author would like to thank Professor G. A. Jeffrey for assistance with the preparation of the paper. This work was supported by Grant No. GM-11293 from the U. S. Public Health Service, National Institutes of Health.

References

Berking, B. \& Seeman, N. C. (1971). Acta Cryst. B27, 1752-1760.
Brown, G. M. \& Thiessen, W. E. (1969). Acta Cryst. A 25, S 195.
Dreissig, W. \& Luger, P. (1972). Carbohyd. Res. 23, 447449.

Table 5. Least-squares planes in 1,6-anhydro-3,4-O-isopropylidene- β - D -talopyranose and related compounds
Equation of the planes: $A x+B y+C z=D$, with A, B, C, D in \AA. Distances to the plane are given in \AA. Asterisks indicate atoms not included in the calculation of the plane.
1,6-Anhydro-3,4-O-isopropylidene- β-D-talopyranose

Table 6. Torsion angles of the anhydride and isopropylidene rings

Anhydride ring					Isopropylidene ring				
O(1)	C(1)	O(5)	C(5)	-43.2°	C(3)	$\mathrm{O}(3)$	$\mathrm{C}(7)$	$\mathrm{O}(5)$	$-38.4{ }^{\circ}$
C(1)	$\mathrm{O}(5)$	C(5)	C(6)	$42 \cdot 3$	O(3)	C(7)	$\mathrm{O}(4)$	C(4)	$20 \cdot 4$
O(5)	C(5)	C(6)	$\mathrm{O}(1)$	-27.6	C(7)	$\mathrm{O}(4)$	C(4)	C(3)	$4 \cdot 2$
C(5)	C(6)	$\mathrm{O}(1)$	C(1)	2.0	O (4)	C(4)	C(3)	$\mathrm{O}(3)$	-27.0
C(6)	$\mathrm{O}(1)$	C(1)	$\mathrm{O}(5)$	25.4	C(4)	C(3)	$\mathrm{O}(3)$	C(7)	39.9
Pyranose ring									
C(1)	C(2)	C(3)	C(4)	$25.2{ }^{\circ}$	C(4)	C(5)	O(5)	C(1)	-79.7°
C(2)	C(3)	C(4)	C(5)	-27.9	C(5)	$\mathrm{O}(5)$	C(1)	C(2)	77.8
C(3)	C(4)	C(5)	$\mathrm{O}(5)$	55.0	O(5)	C(1)	C(2)	C(3)	-50.7

Table 7. $\mathrm{C}-\mathrm{O}$ bond lengths in anhydride rings (\AA)

Table 8. Environment of the $\mathrm{H}(\mathrm{O} 2)$ atom

i	j	k	$d_{l j}$	$d_{i k}$	$d_{j k}$	$L i j k$
$\mathrm{O}(2)$	$\mathrm{H}(\mathrm{O} 2)$	$\mathrm{O}(1)$	$0.71(3) \AA$	$2 \cdot 896(3) \AA$	$2.67(3) \AA$	$102(1)^{\circ}$
$\mathrm{O}(2)$	$\mathrm{H}(\mathrm{O} 2)$	$\mathrm{O}(3)$		$2.744(2)$	$2.41(3)$	$111(2)$
$\mathrm{O}(2)$	$\mathrm{H}(\mathrm{O} 2)$	$\mathrm{O}(5)^{*}$		$2.956(3)$	$2.33(3)$	$148(2)$

* Translated by c.

Fig. 3. Torsion angles for the pyranose ring of 1,6 -anhydro-3,4- O-isopropylidene- β-d-talopyranose.

Fig. 4. Molecular packing, [001] projection, in 1,6-anhydro-3,4-O-isopropylidene- β-d-talopyranose.

Germain, G., Main, P. \& Woolfson, M. M. (1970). Acta Cryst. B26, 274-285.
Heyns, K., Koll, P. \& Paulsen, H. (1971). Chem. Ber. 104, 2553-2566.
International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., pp. 207-209. Birmingham: Kynoch Press.
Jeffrey, G. A., Pople, J. A. \& Radom, L. (1972). Carbohyd. Res. 25, 117-131.
Lechat, J. \& Jeffrey, G. A. (1972). Acta Cryst. B28, 3410-3415.

Park, Y. J., Kim, H. S. \& Jeffrey, G. A. (1971). Acta Cryst. B27, 220-227.
Schwarz, J. C. P. (1973). Chem. Commun. pp. 505-508.
Shiono, R. (1969). Data Reduction Program, Dept. of Crystallography, Univ. of Pittsburgh, Pittsburgh, Pa. 15260.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Takagi, S., Shiono, R. \& Rosenstein, R. D. (1973). Acta Cryst. B29, 1177-1186.

